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Abstract
We discuss phase-space delocalization for the rigid rotor within a semiclassical
context by recourse to the Husimi distributions of both the linear and the 3D-
anisotropic instances. The Husimi function can be viewed in a variety of ways.
In particular, we obtain it as the expectation value of the density operator in a
suitable basis of coherent states. Our treatment is based upon the concomitant
Fisher information measures. The pertinent Wehrl entropy is also investigated
in the linear case.

PACS numbers: 03.67.−a, 05.30.−d, 31.15.Gy

1. Introduction

Using Fisher’s information measure as our main tool, we will be concerned here with the
semiclassical description of the rotational dynamics of molecular systems. A pioneer analysis
of such rotational dynamics is that of Morales et al in [1], who studied the connection between
it and coherent states [2, 3].

The coherent states (CS) formulation is not unique and several authors have developed
alternative descriptions for molecular quantum systems. We need CS in this work because
one uses them so as to construct Husimi semiclassical distributions (see sections 2.2 and 3.1).
With the latter, we determine Fisher’s measure (see section 3.2):

Coherent states → Husimi distribution → Fisher’s information measure.

We have chosen two traditional formulations for coherent states in order to discuss the
semiclassical dynamics of molecular rotational systems. One of them is devoted to two-
dimensional case [4] and the other to the three-dimensional one [1].
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In [5, 6] the authors discuss, among other things, the advantages of the Husimi distribution
for the interpretation of the electronic structure in hydrogen and nitrogen atoms. They
suggested that their work may be extended to the molecular instance. Following this suggestion
we address here the simplest applicable model, i.e., the rigid rotor. Its usefulness for describing
diatomic molecules is well known [7].

Delocalization is an ‘energetically favourable’ process, since it distributes the
wavefunction over a volume greater than the size of the sample. Thus, the net energy of
the molecule is lowered, which results in resonance stabilization. The celebrated Fisher
information F [9–12] can be related (for example by Garbaczewski [8]) to the inverse of the
delocalization measure as follows: if we take a wave package with a standard deviation σ ,
the Fisher information is given by F � 1/σ 2, thus, in this sense, we realize that the Fisher
information is a quite sensitive indicator of the delocalization of the wave package [9–11].

The rigid rotor is a system of a single particle whose quantum spectrum of energy is
exactly known. Therefore, the study of typical thermodynamic properties can be analytically
derived [13]. Applications lead to the treatment of important aspects of molecular systems
[14] and several applications to materials [15–18].

The paper is organized as follows: in section 2, we introduce basic aspects and properties
which must be satisfied by coherent states. In section 3, we explore the linear rigid rotor.
We write the probability of finding a quantum state in a coherent state that is used to obtain
an explicit expression for the (i) Husimi distribution, (ii) Wehrl entropy and (iii) Fisher
Information. These results are of help in section 4, where we discuss a model for the three-
dimensional rigid rotor. Finally, in section 5, we draw some concluding remarks.

2. Coherent states: harmonic oscillator

Quantum-mechanical phase-space distributions expressed in terms of the coherent states |z〉
of the harmonic oscillator [2] have been proved to be useful in different contexts. Particular
reference is made to the important work of Anderson and Halliwell [19], who discuss, among
other things, the concepts of Husimi distribution and Wehrl entropy. Coherent states are
eigenstates of the annihilation operator â, appropriate for the problem at hand, i.e.,

â|z〉 = z|z〉, (1)

whose Hamiltonian reads Ĥo = h̄ω[â†â+1/2] and the complex eigenvalues of the annihilation
operator â are given by

z = (mω/2h̄)1/2x + i(2h̄ωm)−1/2p. (2)

2.1. Requirements for a formulation of coherent states

It is well known that coherent states can be constructed in several ways and by recourse to
different techniques, its formulation being of a non-unique character. Gazeau and Klauder
suggest that a suitable formalism for coherent states should satisfy the following criteria:
(i) continuity of labelling, (ii) resolution of unity, (iii) temporal stability and (iv) action
identity [20], that we detail below.

(i) Continuity of labelling refers to the map from the label space L into Hilbert space. This
condition means that the expression ||z′〉 − |z〉| → 0 whenever z′ → z.

(ii) Resolution of unity: a positive measure τ(z) on L exists such that the unity operator
admits the representation∫

L
|z〉〈z| dτ(z) = 1, (3)
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where |z〉〈z| denotes a projector, which takes a state vector into a multiple of the
vector |z〉.

(iii) Temporal stability: the evolution of any coherent state |z〉 always remains a coherent
state, which leads to a relation of the form

|z(t)〉 = e−iĤ t/h̄|z〉, (4)

where z(0) = z, for all z ∈ L and t.
(iv) Action identity: this property requires that

〈z|Ĥ |z〉 = |z|2h̄ω. (5)

At this point, we remark that requirements (iii) and (iv) are satisfied when the Hamiltonian
Ĥ of the system and its spectrum has the form En ∼ nh̄ω, where n is the quantum number
and ω is the frequency of the oscillator [20]. In addition, there are some shortcomings
about these requirements; for instance, Klauder’s states cannot be used for degenerate
systems. Furthermore, it is questionable that the action identity can lead to the classical
action-angle variable interpretation [21].

2.2. Applications to Husimi function and Wehrl entropy

Wehrl’s entropy W is a very useful measure of localization in phase space [22]. It is built up
using coherent states [2, 19, 22] and constitutes a powerful tool in statistical physics. The
pertinent definition reads

W = −
∫

dx dp

2πh̄
µ(x, p) ln µ(x, p), (6)

where µ(x, p) = 〈z|ρ̂|z〉 is a ‘semiclassical’ phase-space distribution function associated with
the density matrix ρ̂ of the system [2, 3]. µ is often referred to as the Husimi distribution [23].
The distribution µ(x, p) is normalized in the fashion∫

(dx dp/2πh̄)µ(x, p) = 1. (7)

These last two equations clearly indicate that the Wehrl entropy is simply the ‘classical entropy’
(6) of a Wigner distribution. Indeed, µ(x, p) is a Wigner-distribution DW smeared over an
h̄-sized region of phase space [19]. The smearing renders µ(x, p) a positive function, even if
DW does not have such a character. The semiclassical Husimi probability distribution refers
to a special type of probability: that for simultaneous but approximate location of position
and momentum in phase space [19]. The uncertainty principle manifests itself through the
inequality W � 1, which was first conjectured by Wehrl [22] and later proved by Lieb [24].

The usual treatment of equilibrium in statistical mechanics makes use of the Gibbs’s
canonical distribution, whose associated, ‘thermal’ density matrix is given by

ρ̂ = Z−1 e−βĤ , (8)

with Z = Tr(e−βĤ ) being the partition function, β = 1/kBT the inverse temperature (T) and
kB the Boltzmann constant. In order to conveniently write an expression for W consider an
arbitrary Hamiltonian Ĥ of eigenenergies En and eigenstates |n〉 (n stands for a collection of
all the pertinent quantum numbers required to label the states). One can always write [19]

µ(x, p) = 〈z|ρ̂|z〉 = 1

Z

∑
n

e−βEn |〈z|n〉|2. (9)

A useful route to W starts then with equation (9) and continues with equation (6).
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3. Linear rigid rotor

We start the present study by exploring a simple model, the linear rigid rotor (LRR), based
on the excellent discussion concerning the coherent states for angular momenta given in [25].
The LRR Hamiltonian is [7]

Ĥ = L̂2

2Ixy

, (10)

where L̂2 = L̂2
x + L̂2

y is the angular momentum operator and Ix and Iy are the associated
moments of inertia. We have assumed that Ixy ≡ Ix = Iy . Calling |IK〉 the set of H-
eigenstates, we recall that they verify the relations

L̂2|IK〉 = I (I + 1)h̄2|IK〉
L̂z|IK〉 = Kh̄|IK〉, (11)

with I = 0, 1, 2 . . . , for −I � K � I , the eigenstates’ energy spectrum being given by

εI = I (I + 1)h̄2

2Ixy

. (12)

Coherent states are constructed in [4, 26] for the lineal rigid rotor, using Schwinger’s oscillator
model of angular momentum, in the fashion

|IK〉 =
(
â
†
+

)I+K(
â
†
−
)I−K

√
(I + K)!(I − K)!

|0〉, (13)

with â+, â− being the pertinent creation and annihilation operators, respectively, and |0〉 ≡
|0, 0〉 the vacuum state. The states |IK〉 are orthogonal and satisfy the closure relation, i.e.,

〈I ′K ′|IK〉 = δI ′,I δK ′,K, (14)

∞∑
I=0

I∑
K=−I

|IK〉〈IK| = 1̂. (15)

Since we deal with two degrees of freedom the ensuing coherent states are of the tensor
product (denoted by ⊗) form that involves |z1〉 and |z2〉 [25, 27]:

|z1z2〉 = |z1〉 ⊗ |z2〉, (16)

where

â+|z1z2〉 = z1|z1z2〉, (17)

â−|z1z2〉 = z2|z1z2〉. (18)

Therefore, the coherent state |z1z2〉 writes [25]

|z1z2〉 = e− |z|2
2 ez1â

†
+ ez2â

†
−|0〉, (19)

with

|z1〉 = e− |z1 |2
2 ez1â

†
+ |0〉, (20)

|z2〉 = e− |z2 |2
2 ez2â

†
−|0〉. (21)
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We have introduced the convenient notation

|z|2 = |z1|2 + |z2|2. (22)

Using equations (13) and (19) we easily calculate |z1z2〉 and, after a bit of algebra, find

|z1z2〉 = e− |z|2
2

∑
n+,n−

z
n+
1√
n+!

z
n−
2√
n−!

|IK〉 (23)

where n+ = I + K and n− = I − K . Therefore, the probability of observing the state |IK〉
in the coherent state |z1z2〉 is of the form

|〈IK|z1z2〉|2 = e−|z|2 |z1|2n+

n+!

|z2|2n−

n−!
. (24)

The present coherent states satisfy resolution of unity:∫
d2z1

π

d2z2

π
|z1z2〉〈z1z2| = 1. (25)

Furthermore, z1 and z2 are continuous variables. We are at this point ready to begin presenting
our new results.

3.1. Husimi distribution

Following the procedure developed by Anderson et al [19], we can readily calculate the
pertinent Husimi distribution [23]. For our system this is defined, from equation (9), as

µ(z1, z2) = 〈z1, z2|ρ̂|z1, z2〉, (26)

where the density operator is

ρ̂ = Z−1
2D exp(−βĤ ). (27)

Here β is the ordinary inverse temperature parameter (this temperature is the ordinary
thermodynamic one). The concomitant rotational partition function Z2D is given in [7]

Z2D =
∞∑

I=0

(2I + 1) e−I (I+1) 	
T , (28)

with 	 = h̄2/(2IxykB). Remark that in the present context speaking of the ‘trace operation’
entails performing the sum tr ≡ ∑∞

I=0

∑I
K=−I . Inserting now the closure relation into

equation (26), and using equation (24), we finally get our Husimi distribution in the fashion

µ(z1, z2) = e−|z|2
∑∞

I=0
|z|4I

(2I )! e−I (I+1) 	
T∑∞

I=0(2I + 1) e−I (I+1) 	
T

. (29)

It is easy to show that this distribution is normalized to unity∫
d2z1

π

d2z2

π
µ(z1, z2) = 1, (30)

where z1 and z2 are given by equations (17), (18) and (22). Note that we must deal with the
binomial expression (|z1|2 + |z2|2)4I firstly and then integrate over the whole complex plane (in
two dimensions) in order to verify the normalization condition (30). The differential element
of area in the z1(z2) plane is d2z1 = dx dpx/2h̄ (d2z2 = dy dpy/2h̄) [2]. Moreover, we have
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Figure 1. Linear rotor: the Husimi function µ(z1, z2) is plotted as a function of |z| for several
values of the temperature: from T/	 = 0.1 to T/	 = 10. The behaviour of the Husimi function
resembles that of a Gaussian distribution. The peak of the distribution increases as the temperature
decreases.

the phase-space relationships

|z1|2 = 1

4

(
x2

σ 2
x

+
p2

x

σ 2
px

)
, (31)

|z2|2 = 1

4

(
y2

σ 2
y

+
p2

y

σ 2
py

)
, (32)

where σx ≡ σy = √
h̄/2mω and σpx

≡ σpy
= √

mωh̄/2. In figure 1, we depict the behaviour
of the Husimi distribution µ(z1, z2) as a function of |z| at fixed temperature. The profile of
the Husimi function is similar to that of a Gaussian distribution.

3.2. Wehrl entropy and Fisher information

The Wehrl entropy is a semiclassical measure of localization [22] (so is Fisher’s one [12] as
well). Indeed, Wehrl’s measure is simply a logarithmic Shannon measure built up with Husimi
distributions. For the present bi-dimensional model this entropy reads

W = −
∫

d2z1

π

d2z2

π
µ(z1, z2) ln µ(z1, z2), (33)

where µ(z1, z2) is given by equation (29). The so-called phase-space, shift-invariant Fisher
measure [12] is a particular instance of the general Fisher one [10, 11] that can be regarded
as an (also semiclassical) counterpart of Wehrl entropy [12]. Extending now to the present
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2D case the ideas developed in [12] for the case of the 1D-harmonic oscillator, we define the
(phase-space) shift-invariant Fisher measure in the fashion

F =
∫

d2z1

π

d2z2

π
µ(z1, z2)A, (34)

with

A = σ 2
x

[
∂ ln µ(z1, z2)

∂x

]2

+ σ 2
px

[
∂ ln µ(z1, z2)

∂px

]2

+ σ 2
y

[
∂ ln µ(z1, z2)

∂y

]2

+ σ 2
py

[
∂ ln µ(z1, z2)

∂py

]2

. (35)

It is easy to prove that the quantity A has the following form, see details in the appendix:

A = η(z1, z2)
2, (36)

where

η(z1, z2) =
∑∞

I=0

[ |z|4I−1

(2I−1)! − |z|4I+1

(2I )!

]
e−I (I+1)	/T∑∞

I=0
|z|4I

(2I )! e−I (I+1)	/T
. (37)

Therefore, the corresponding Fisher measure acquires the simpler appearance

F =
∫

d2z1

π

d2z2

π
µ(z1, z2)η(z1, z2)

2, (38)

i.e.,

F ≡ 〈η(z1, z2)
2〉, (39)

where with the notation

〈G〉 =
∫

d2z1

π

d2z2

π
µ(z)G, (40)

we allude to the semiclassical expectation value of G.
In figure 2, we plot both Fisher’s information and Wehrl’s entropy as a function of T/	.

They behave in different manner. If the temperature T → 0, Fisher’s information measure
(inverse delocalization) takes its maximum value and Wehrl’s its minimum. This behaviour is
reversed for high temperatures, with the degree of delocalization becoming larger and larger.
In addition, it compares the rotor results with those for the harmonic oscillator. It depicts, as
a function of the temperature, Wehrl’s and Fisher’s measures in the case of the two models.
The overall trend is the same in the two different physical cases, a rather remarkable result.

3.3. Uncertainty relation

We calculate now

〈|z|n〉 =
∫

d2z1

π

d2z2

π
µ(z)|z|n, (41)

where n = 1, 2 and we find explicitly

〈|z|n〉 =
∑∞

I=0
�(2I+2+n/2)

(2I )! e−I (I+1) 	
T∑∞

I=0(2I + 1) e−I (I+1) 	
T

. (42)

We see that z = 〈|z|2〉 − 〈|z|〉2. With this result one can plot the Cramer–Rao product
Fz versus temperature, depicted in figure 3, which indicates how phase-space localization
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ability changes with temperature. The strange behaviour near T = 0 should not cause
undue worries because the semiclassical approximation is not valid near T = 0. Curiously
enough, our localization information remains relatively constant over a wide temperature
range. The inescapable conclusion is that the Cramer–Rao localization estimator is not
affected by temperature. This independence from T makes the Cramer–Rao estimator a much
better one than Wehrl’s entropy that strongly depends on the temperature.

4. Rigid rotor in three dimensions

In the present section we consider a more general problem, the 3D-rigid rotor model, whose
Hamiltonian writes [1]

Ĥ = L̂2
x

2Ix

+
L̂2

y

2Iy

+
L̂2

z

2Iz

, (43)

where Ix, Iy and Iz are the associated moments of inertia. A complete set of rotor eigenstates
is {|IMK〉}. The following relations apply:

L̂2|IMK〉 = I (I + 1)h̄2|IMK〉
L̂z|IMK〉 = Kh̄|IMK〉 (44)

Ĵ z|IMK〉 = Mh̄|IMK〉,
where I = 0, . . . ,∞,−I � K � I and −I � M � I . The states |IMK〉 satisfy orthogonality
and closure relation [1]:

〈I ′M ′K ′|IMK〉 = δI ′,I δM ′,MδK ′,K, (45)

∞∑
I=0

I∑
M=−I

I∑
K=−I

|IMK〉〈IMK| = 1̂. (46)

If we take L̂2 = L̂2
x + L̂2

y + L̂2
z and assume axial symmetry, i.e., Ixy ≡ Ix = Iy , we can recast

the Hamiltonian as

Ĥ = 1

2Ixy

[
L̂2 +

(
Ixy

Iz

− 1

)
L̂2

z

]
, (47)

where L̂2 is the angular momentum operator and L̂z is its projection on the rotation axis z.
The concomitant spectrum of energy becomes

εI,K = h̄2

2Ixy

[
I (I + 1) +

(
Ixy

Iz

− 1

)
K2

]
, (48)

where I = 0, 1, 2, . . . and it represents the eigenvalue of the angular momentum operator L̂2,
the numbers m = −I, . . . ,−1, 0, 1, . . . , I stand for the projections on the intrinsic rotation
axis of the rotor. All states exhibit a (2I + 1) degeneracy. The parameters Ix = Iy ≡ Ixy and
Iz are the inertia momenta. Different ‘geometrical’ instances are characterized through the
Ixy/Iz ratio. For example, the value Ixy/Iz = 1 corresponds to the spherical rotor. Limiting
cases can also be considered. This is, Ixy/Iz = 1/2 and Ixy/Iz → ∞, that correspond to the
extremely oblate and prolate cases, respectively.
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4.1. Coherent states for the rigid rotor in three dimensions

In order to obtain the Husimi distribution for this problem we need first of all to have the
associated coherent states. Morales et al have constructed them in [1] and discussed their
mathematical foundations. First, they introduced the auxiliary quantity

XI,M,K =
√

I !(I + M)!(I − M)!(I + K)!(I − K)!, (49)

and then write [1]

|z1z2z3〉 = e− |u|2
2

∑
IMK

[(2I )!]2z
(I+M)
1 zI

2z
(I+K)
3

XI,M,K

|IMK〉, (50)

where the following supplementary variable were introduced by Morales et al in [1]:

|u|2 = |z2|2(1 + |z1|2)2(1 + |z3|2)2. (51)

All coherent states share at least two requirements. Continuity of labelling and resolution of
unity. In relation to the last property we add∫

d�|z1z2z3〉〈z1z2z3| = 1 (52)

where d� is the measure of integration given by [1]

d� = dτ
{
4[(1 + |z1|2)(1 + |z3|2)]4|z2|4 − 8[(1 + |z1|2)(1 + |z3|2)]2|z2|2 + 1

}
(53)

with

dτ = d2z1

π

d2z2

π

d2z3

π
, (54)

and, of course, in this case we have three degrees of freedom. The present formulation satisfies
the weaker version of the second requirement, because the measure is defined nonpositive [1].

4.2. Husimi function, Wehrl entropy and Fisher measure

Using now equation (50) we find

|〈IMK|z1z2z3〉|2 = e−|u|2

X2
I,M,K

[(2I )!]2|z1|2(I+M)|z2|2I |z3|2(I+K) (55)

and determine that, in this case, the rotational partition function reads

Z3D =
∞∑

I=0

I∑
K=−I

I∑
M=−I

e−βεI,K , (56)

i.e.,

Z3D =
∞∑

I=0

(2I + 1) e−I (I+1) 	
T

I∑
K=−I

exp

(
−

(
Ixy

Iz

− 1

)
K2 	

T

)
. (57)

Remark that if we take the ‘extremely prolate’ limiting case Ixy/Iz → ∞ just one term
survives in the right sum of the right-hand side in equation (57), that for K = 0, while all terms
for K �= 0 vanish. In this special instance case Z2D is recovered from Z3D. The pertinent
Husimi distribution becomes

µ(z1, z2, z3) = e−|u|2

Z3D

∞∑
I=0

(2I )!

I !
|v|2I e−I (I+1) 	

T × g(I), (58)
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where

g(I) =
I∑

K=−I

|z3|2(I+K)

(I + K)!(I − K)!
exp

(
−

(
Ixy

Iz

− 1

)
K2 	

T

)
, (59)

with

|v|2 = (1 + |z1|2)2|z2|2, (60)

|u|2 = |v|2(1 + |z3|2)2. (61)

We can easily verify that µ(z1, z2, z3) is normalized in the fashion∫
d� µ(z1, z2, z3) = 1. (62)

We compute now (i) the Wehrl entropy in the form

W =
∫

d� µ(z1, z2, z3) ln µ(z1, z2, z3), (63)

and (ii) the Fisher measure as follows:

F =
∫

d� µ(z1, z2, z3)A3D, (64)

where in this case we define the three-dimensional quantity A3D in the fashion

A3D = σ 2
x

[
∂ ln µ(z1, z2)

∂x

]2

+ σ 2
px

[
∂ ln µ(z1, z2)

∂px

]2

+ σ 2
y

[
∂ ln µ(z1, z2)

∂y

]2

+ σ 2
py

[
∂ ln µ(z1, z2)

∂py

]2

+ σ 2
z

[
∂ ln µ(z1, z2)

∂z

]2

+ σ 2
pz

[
∂ ln µ(z1, z2)

∂pz

]2

, (65)

with the phase-space relationships (31), (32) and

|z3|2 = 1

4

(
z2

σ 2
z

+
p2

z

σ 2
pz

)
, (66)

where σz = √
h̄/2mω and σpz

= √
mh̄ω/2. In this instance d2z3 = dz dpz/2h̄. Finally, we

are led to

F =
∫

d� µ(z1, z2, z3)

{
γ 2(|z1|2|z2|2 +

1

4
(1 + |z1|2)2) + 4|u|2|z3|2

}
, (67)

i.e.,

F = 〈
γ 2

(|z1|2|z2|2 + 1
4 (1 + |z1|2)2

)
+ 4|u|2|z3|2

〉
, (68)

where

γ = −(1 + |z3|2)2 ∑∞
I=0

2(2I )!
I ! |v|2I+1 e−I (I+1) 	

T × g(I)∑∞
I=0

(2I )!
I ! |v|2I e−I (I+1) 	

T × g(I)

+

∑∞
I=0

2(2I )!
(I−1)! |v|2I−1 e−I (I+1) 	

T × g(I)∑∞
I=0

(2I )!
I ! |v|2I e−I (I+1) 	

T × g(I)
. (69)
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Figure 4. 3D-anisotropic rotor. We plot Wehrl’s entropy W as a function of T/	 for several
values of the anisotropy ratio (Ixy/Iz = 1/2, 1, 5, 10). Trends for the Wehrl entropy are not quite
similar to those for the linear case. A maximum is seen at T/	 = 0 and a minimum at T/	 � 2,
whose exact values depend on the ratio Ixy/Iz.

In the special instance Ixy/Iz = 1, that corresponds to the spherical rotor, we explicitly
obtain

µ(z1, z2, z3) = e−|u|2
∑∞

I=0
|u|2I

I ! e−I (I+1) 	
T∑∞

I=0(2I + 1)2 e−I (I+1) 	
T

. (70)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.
In order to emphasize some special cases associated with possible applications we consider

several possibilities.

(i) The spherical rotor Ixy = Ix = Iy = Iz, thus Ixy/Iz = 1 (e.g. CH4).
(ii) The oblate rotor Ixy = Ix = Iy < Iz, specifically 1/2 � Ixy/Iz < 1 (e.g. C6H6).

(iii) The prolate rotor Ixy = Ix = Iy > Iz, which corresponds to Ixy/Iz > 1 (e.g. PCl5).
(iv) The extremely prolate rotor is equivalent to the linear case (all diatomic molecules) Iz = 0,

this is Ixy/Iz → ∞ (e.g. CO2, C2H2).

In figure 4, we depict the Wehrl entropy W , as a function of T/	, for several values of
Ixy/Iz. This is the extremely oblate rotor Ixy/Iz = 1/2, the prolate rotor Ixy/Iz = 5, 10 and
the spherical case Ixy/Iz = 1.

5. Concluding remarks

A study has been performed on the basis of Schwinger’s angular momenta construction [4]
and following Morales et al [1] coherent states’ rotor formulation. Possible applications to
specific molecular problems have been suggested.



Fisher information, delocalization and the semiclassical description of molecular rotation 5139

We have concentrated our efforts on the study of the semiclassical behaviour of the rigid
rotor and have obtained in analytical fashion the form of the appropriate semiclassical Husimi
distribution for two cases, namely, the linear and the axially symmetric rigid rotor. The linear
case can be reobtained as a particular instance of the three-dimensional formulation. We
have also obtained an analytical expression of the shift-invariant Fisher measure built up with
Husimi distributions for the rigid rotor model, concluding that Fisher’s measure is a better
indicator of the delocalization than Wehrl’s entropy.
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Appendix

First of all, we carry out the differentiation of the Husimi distribution (29) with respect to the
variable x, obtaining the following result:

∂ ln µ(z1, z2)

∂x
= 2η(z1, z2)

∂|z|
∂x

, (A.1)

where the quantity η(z1, z2) was defined in equation (37). Moreover, from equations (31) and
(32) we have

∂|z|
∂x

= x

4|z|σ 2
x

, (A.2)

and we are led to
∂ ln µ(z1, z2)

∂x
= η(z1, z2)x

2|z|σ 2
x

. (A.3)

We arrive at a similar expression differentiating with respect to px ,

∂ ln µ(z1, z2)

∂px

= η(z1, z2)px

2|z|σ 2
px

. (A.4)

Analogous expressions are obtained by replacing x and px with y and py , respectively.
Finally, substituting these results into equation (35) we thus arrive at

A = η(z1, z2)
2. (A.5)
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